

Modelling the distributional learning of verb argument structure

Daoxin Li daoxinli@sas.upenn.edu Department of Linguistics, University of Pennsylvania

Introduction

 Linguists agree there are systematic mappings between the syntax and semantics of a verb^[1-3] (e.g., (1-3)) and that children know these mapping rules from a young age^[4-5].

(1) Causation – transitive (e.g., *open, break*).
(2) Transfer – dative construction (e.g., *give, send*).
(3) Motion – PP (e.g., *put, move*).

Results

• Mapping rules learned when trained on all data:

(4) Causative – transitive (5) Act – intransitive
(6) Change of state – intransitive
(7) Creation – double object

Model comparisons

- We trained the Bayesian model with Alex' input data and examined the acquired knowledge as in [14].
- Semantic features of highest probabilities in different syntactic frames:
 Syntactic frame | All data | Clean data

- Where does this knowledge come from?
 - Unlikely entirely universal or innate given the considerable variabilities across languages and idiosyncrasies within^[6-8].
- This work: A computational model that automatically learns productive rules between syntax and semantics.
- We show the rules are learnable from child-directed speech without assuming any prior syntax-semantics associations.

Model Description

Based on the Tolerance/Sufficiency Principle (TSP): A generalization R defined over N items is productive iff the number of items attested to follow R exceeds N-N/InN^[9].

 Additional rules learned when trained on clean data (nonmatching examples excluded):

(8) Motion – PP (9) Transfer – dative

 Rule (4), which is acquire by children before 2;0, is indeed learned early and robustly by the model despite modest vocabulary size and input. Modeling 100 children with different input:

 The model also captures well-documented causative overgeneralizations (10): intransitive & change of state ->

V NP	act (2.9×10^{-7}) , causation (1.7×10^{-7}) .	act (3.3×10^{-7}) , causation (2.5×10^{-7}) , communication
	communication (1.6 × 10^{-7})	(2.0×10^{-7})
V	act (2.8×10^{-7}) , causation (1.2×10^{-7}) , change of state (7.3×10^{-8})	act (3.3×10^{-7}) , causation (1.4×10^{-7}) , change of state (8.8×10^{-8})
V NP NP	act (1.0×10^{-7}) , causation (5.5 × 10 ⁻⁸), transfer (4.7 × 10 ⁻⁸)	act (1.1×10^{-7}) , transfer (9.5 × 10 ⁻⁸), causation (5.8 × 10 ⁻⁸)
V NP to NP	act (6.0×10^{-8}) , causation (5.4 × 10 ⁻⁸), transfer (5.0 × 10 ⁻⁸)	transfer (1.5×10^{-7}) , act (8.2×10^{-8}) , causation (8.2 $\times 10^{-8})$)
V NP PP	act (5.8×10^{-8}) , causation (5.8 × 10 ⁻⁸), caused motion (5.7 × 10 ⁻⁸)	act (9.0×10^{-8}) , causation (8.9 × 10 ⁻⁸), caused motion (8.8 × 10 ⁻⁸)
V PP	act (1.7×10^{-7}) , motion (9.2 × 10 ⁻⁸), causation (6.0 × 10 ⁻⁸)	act (1.5×10^{-7}) , motion (1.4×10^{-7}) , causation (7.0×10^{-8})

• Syntactic bootstrapping test: Compare probabilities of semantic features given a syntactic frame

Test pair	Probability (all data)	Probability (clean data)
'V NP' – 'act &	5.9×10^{-8}	7.1×10^{-8}
causation' (matched)		
'V NP' – 'act'	1.9×10^{-9}	2.3×10^{-9}
(unmatched)		
'V' – 'act' (matched)	5.9×10^{-8}	$7.1 imes 10^{-8}$
'V' – 'act & causation'	5.9×10^{-8}	$7.1 imes 10^{-8}$
(unmatched)		

Production test: Find syntactic frames of highest

transitive

(10) a. Kendall fall that toy. (Kendall, 2;3)
b. I'm gonna ... disappear something... (E, 3;7).
c. He's gonna die you, David. (Hilary, 4+) [13]

Data

- Source: Input to Alex (1;4-3;5) from Providence corpus^[10]
- Vocabulary: 60 most frequent action verbs in early child

Model Comparisons

Comparisons against a Bayesian model^[14]: Learning probabilistic associations between syntactic frames and

probabilities	given the semantic reatures
---------------	-----------------------------

Semantic features	All data	Clean data
act	$V(5.9 \times 10^{-8})$	$V(7.1 \times 10^{-8})$
act & causation	V (5.9 \times 10 ⁻⁸), V NP	V NP (7.1×10^{-8}) ,
	(5.9×10^{-8}) , V NP to NP	$V(7.1 \times 10^{-8})$
	(1.0×10^{-8})	

- Problem: High token frequency of optional transitive verbs leads to a strong association between causation meaning and intransitive frame, which is not a regular rule in English (Not a problem in our model because type frequency is low).
- Account for causative overgeneration: Unaccusative verbs are used in the transitive frame when there is a causative agent given the acquired association between causation and transitivity; will retreat with more input, since knowledge of individual words will have a stronger influence as token frequency increases.
 - Problems: (1) Children also overgeneralize unaccusative verbs without a causative agent (e.g., *die, disappear*); (2) It predicts more frequent verbs to retreat earlier, which is not true: Ross from MacWhinney corpus overgeneralizes all these words around ages 3-4^[15]:

Verb	Frequency
disappear	152
stay	2,662
fall	2,819

English^[11-12]

- Extracted caregivers' sentences containing these verbs 1752 sentences
- Manually coded the syntactic frame and the semantic features from videos (*act, causation, motion, transfer, change-of-state, creation, communication,* all assumed identifiable to young learners^{e.g., [2]})
- To model the real-world challenge, we did not exclude sentences where the accompanying event in the video did not match the sentence (N=302, ~20%)

semantic features by grouping input pairs into constructions based on unsupervised Bayesian clustering

 A fundamental difference: The Bayesian model relies on token frequency, our model only uses type frequency

· · · · · · · · · · · · · · · · · · ·	1
go	55,689
	-

Conclusion

- Rules of verb argument structure are learnable from realistic input data without universal, innate linking knowledge.
- Our threshold-based model acquires knowledge that is more accurate and more consistent with human behavior than the Bayesian model.
- Future work should apply the model to larger corpora and different languages.
- The model can also be applied to the acquisition of other generalizations.

References. [1] Gruber, J.S. 1965. Studies in lexical relations. [2] Jackendoff, R. 1978. Linguistic theory and psychological reality. [3] Ladusaw, W. & D. Dowty. 1988. Syntax and semantics. [4] Pinker, S. 1989. Learnability and	Acknowledgements. Thank you to Charles
cognition: The acquisition of argument structure. [5] Yuan, S. & C. Fisher. 2009. Psychological Science. [6] Fisher, C., H. Gleitman & L.R. Gleitman. 1991. Cognitive Psychology. [7] Bavin, E.L. & S. Stoll (eds.). 2013. The acquisition	Yang, Kathryn Schuler, Julie Legate, Johr
of ergativity. [8] Bowerman, M. & P. Brown (eds.). 2008. Crosslinguistic perspectives on argument structure: Implications for learnability. [9] Yang, C. 2016. The price of linguistic productivity How children learn to break rules of	Trueswell, Marlyse Baptista, and participants of a
language. [10] Demuth, K., J. Culbertson & J. Alter. 2006. Language and Speech. [11] Carlson, M., M. Sonderegger & M. Bane. 2014. Journal of Memory and Language. [12] Rowe, M.L. & Goldin-Meadow, S. 2009. Science. [13]	research seminar at University of Pennsylvania
Bowerman, M. 1982. Language acquisition: The state of the art. [14] Alishali, A. & S. Stevenson. 2008. Cognitive Science. [15] Irani, A. Learning from positive evidence: The acquisition of verb argument structure.	for helpful comments and discussion.